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In previous treatments of superconducting systems with attractive interactions acting in odd-angular-
momentum partial waves, the correlated electron pairs were formed in only two components of a spin triplet. 
This oversight is corrected here by a more general variational treatment, allowing all three components. In 
the case of a ^-wave interaction, the present state is proved to give the absolute minimum of the free energy. 
Its rotational degeneracy is discussed. The energy spectrum is found to be isotropic (provided the normal 
phase is also) with the usual gap, and so to be completely equivalent thermodynamically to the BCS state. 
The charge-density autocorrelation is also isotropic, and the charge-current correlation vanishes. The state 
exhibits the conventional Meissner effect, and cannot be experimentally distinguished from the BCS state 
by means of electromagnetic or tunneling measurements, acoustic attenuation, or nuclear magnetic reso­
nance (NMR) relaxation times. The paramagnetic spin susceptibility decreases with temperature from 
its value in the normal phase to a limiting ratio of f, in good agreement with results deduced from Knight 
shift measurements on mercury and tin, and in contrast to the BCS prediction. However, the addition of 
impurities is found to reduce the critical temperature sharply (again in contrast to the BCS case). Thus, 
the experimental observation of the ^-wave pair state is expected to be difficult, and the agreement with 
Knight shift data is probably fortuitous. Finally, it is suggested that a similar effect in He3 might explain 
why the predicted superfluid phase has not been observed. 

I. INTRODUCTION 

A GREAT measure of success has been achieved by 
-* *• the Bardeen-Cooper-Schriefler (BSC) theory of 
superconductivity1 in comprehending and correlating a 
large and varied body of experimental observations on 
superconductors. Agreement between theory and ex­
periment2 is in many instances so striking as to establish 
the validity, virtually beyond doubt, of the fundamental 
BCS hypothesis of correlated electron pair formation in 
the superconducting state. Nevertheless, certain iso­
lated puzzles do remain,3 one in particular which has 
attracted a good deal of theoretical attention being the 
observed Knight shifts in nuclear magnetic resonance 
(NMR) experiments on mercury,4 tin,6 and vanadium.8 

These resonance frequency shifts from free atom to 
metal are conventionally interpreted as reflecting the 
presence of an additional magnetic field at the nuclei due 
to a nonvanishing spin magnetization of the conduction 
electrons in the external field. Since according to the 
BCS theory pairs are in spin singlets (electron spins 
opposed), and since a finite energy is required to break 

* Work supported in part by the U. S. Air Force Office of Scien­
tific Research and the U. S. Atomic Energy Commission. 

f Initiated while both authors were at the University of Cali­
fornia, San Diego, La Jolla, California. 

1 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 
1175 (1957); N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 58 
(1958) [translation: Soviet Phys.—JETP 7, 41 (1958)]; J. G. 
Valatin, Nuovo Cimento 7, 843 (1958). 

2 Reviewed by J. Bardeen and J. R. Schrieffer, in Progress in Low 
Temperature Physics, edited by C. J. Gorter (North-Holland 
Publishing Company, Amsterdam, 1961), Vol. III . 

8 J. Bardeen, IBM J. Research Develop. 6, 3 (1962). 
4 F. Reif, Phys. Rev. 106, 208 (1957). 
5 G. M. Androes and W. D. Knight, Phys. Rev. 121, 779 (1961). 
6 R. J. Noer and W. D. Knight, Bull. Am. Phys. Soc. 6, 122 

(1961). 
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the correlation, the theory predicts7 that a weak uni­
form magnetic field cannot polarize the superconducting 
electron spins and, hence, that at zero temperature no 
shift should occur. 

Observations to the contrary have stimulated a 
number of authors to propose possible explanations.8,9 

Although these focus primarily on the small size and 
impure composition of the samples,8 among the sug­
gestions advanced has been that the electrons might 
pair in a spin triplet, thereby remaining able to interact 
with a magnetic field and exhibiting a finite spin sus­
ceptibility even in a bulk superconductor.9 Because the 
over-all wave function of a Fermion system must be 
antisymmetric under the interchange of any two par­
ticles, a pair of total spin S—l (the symmetric spin 
functions) must necessarily have odd spatial parity, and 
hence, odd orbital angular momentum. Triplet pairing 
thus requires the hypothesis of an interparticle inter­
action attractive in at least one odd partial wave, such 
as the p wave. 

Such interactions have already been studied in con­
siderable detail,10 although primarily because of a close 
mathematical similarity to the low-temperature super-

7 K. Yosida, Phys. Rev. 110, 769 (1958). 
8 V. Heine and A. B. Pippard, Phil. Mag. 3, 1046 (1958); R. A. 

Ferrell, Phys. Rev. Letters 3, 262 (1959); P. C. Martin and L. P. 
Kadanoff, ibid. 3, 322 (1959); J. R. Schrieffer, ibid. 3, 323 (1959); 
P. W. Anderson, ibid. 3, 325 (1959); A. A. Abrikosov and L. P. 
Gor'kov, Zh. Eksperim. i Teor. Fiz. 39, 480 (1960) [translation: 
Soviet Phys.—JETP 12, 337 (1961)]; L. N. Cooper, Phys. Rev. 
Letters 8, 367 (1962). 

9 For a review, see H. Suhl in Low Temperature Physics, edited 
by C. DeWitt, B. Dreyfus, and P. G. de Gennes (Gordon and 
Breach, New York, 1962). 

10 D. J. Thouless, Ann. Phys. (N. Y.) 10, 553 (1960); P. W. 
Anderson and P. Morel, Phys. Rev. 123, 1911 (1961). 
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fluid phase proposed for liquid He3.11 In particular, 
Anderson and Morel10 (AM) have predicted for a state 
with p-w&ve attraction, many peculiar features, such as 
energy spectrum with anisotropic gap vanishing in cer­
tain directions, nonexponential low temperature specific 
heat, and surface currents, which taken together make 
this state physically implausible and in sharp conflict 
both with the BCS results and with experiment. 

The present paper re-examines this question and 
demonstrates that the previous treatments10 of attrac­
tive, odd-parity interactions in fact contain uniformly 
the same oversight. The method used to find the ap­
propriate superconducting state was a coupling of single-
electron states of parallel spin components,12 thus al­
lowing pairs with spin components ^ = ± 1 only; it did 
not consider the symmetrized combination of anti-
parallel spins which comprises the Sz = 0 component of 
the expected spin triplet. Here we propose (Sec. II) a 
variational state incorporating components Se = 0 as 
well as 5 g = ± l ; in the special case of a ^-wave inter­
action, we select one of the solutions corresponding to 
stationary points of the free energy, and show that it not 
only has lower ground-state energy than the equal spin 
pairing (ESP), but more generally gives the absolute 
free energy minimum. The ESP must, therefore, describe 
some excited state. 

The properties of the state with ^-wave pairing are 
found (Sec. I l l and IV) to be very close in most respects 
to those of the BCS state with s-wave pairs, in contrast 
to the ESP. Assuming an isotropic normal phase, the 
superconducting spectrum is also completely isotropic 
and displays the usual gap; the state is thus thermo-
dynamically identical to BCS. The charge-density 
autocorrelation function is isotropic, and the charge 
density-current density correlation vanishes. The spin 
susceptibility, on the other hand, is always finite, with 
a superconducting-to-normal ratio decreasing mono-
tonically with temperature to the limiting value Xs/Xn 

= | , in good (if possibly fortuitous) agreement with the 
Hg and Sn data.4,5 In such other key measurements as 
the acoustic attenuation and N M R relaxation, as well 
as the complete range of electromagnetic experiments 
from the Meissner effect to infrared absorption, the 
/>-wave state is found to predict results essentially the 
same as the BCS state. 

The effect of adding impurities to the system differs, 
however, from BCS, although both the theoretical and 
experimental situations are not entirely clear-cut. In the 
conclusion (Sec. V) we discuss to what extent the p-
wave pair state is physically realizable in the presence of 
impurities, and show that it is unlikely to be a valid 
explanation of the existing anomalous Knight-shift 
phenomena. 

11 K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel, 
Phys. Rev. 118, 1442 (1960); V. J. Emery and A. M. Sessler, ibid. 
119, 43 (1960). 

12 For brevity, we shall refer to this state as the ESP (equal spin 
pairing) solution. 

An Appendix specifies a criterion for the existence of 
a ground state mixing both s- and ^-wave pairs, and 
shows this to be unlikely for most reasonable potentials. 

II. FREE-ENERGY MINIMIZATION 

1. General Formalism 

From the pair interaction potential 

^ = 2 E ^ k k ' f l - k c r ' W W c r G - k ' c r ' (1) 
kk'crcr' 

(where akJ creates a particle of momentum k and third 
spin component |(j), the ESP retains only the terms 
with (7=(r/, which, unlike V, are not invariant to a rota­
tion of the spin space. I t is, therefore, not surprising that 
this theory predicts a strong anisotropy in the ground 
state and the single quasiparticle excitations. In order to 
treat symmetrically all three components of the spin 
triplet which are included in the full interaction V of 
Eq. (1), we must couple electron states of opposite 
momenta and both same and opposite spins. 

We, therefore, perform a canonical transformation13 

(conserving the momentum but not the z component of 
the spin) 

0ker = £ ( w , f f ' k a k a ' + fl<ra'ka-kff'
t) , (2 ) 

where at is a quasiparticle creation operator. This 
transformation mixes four states, and thus is more 
general than the usual one.14 I t proves convenient to 
adopt a four-component matrix notation15 

0 k t 

#k* 

tf-kt1" 

. f l_k*t 

, a"= 

«k+ 

« k -

a_k+ t 

.OL-k-J J 

and to write the transformation (2) in the abbreviated 
form 

/ uk vk \ 
ak=[ )=Ukak, (4) 

V k * u~k*) 

where uk, vk are 2X2 matrices and Uk is 4X4.15 The 
condition that the transformation be canonical (that 
both a and a obey Fermion commutation relations) is 
then simply 

C W k t = l , (5) 

or that Uk is unitary. From definition (4) it can be seen 
that Uk and U~k are not independent; the relation 
between them is 

/0 1\ / 0 1\ 

H oMt o> (6) 
13 N. N. Bogoliubov, Doklady Akad. Nauk SSSR 119, 244 

(1958) [translation: Soviet Phys.—Doklady 3, 292 (1958)]; J. G. 
Valatin, Phys. Rev. 122, 1012 (1961). 

14 But see remark at the end of Sec. III. 
16 We adopt the convention that quantities with superscript k 

are matrices in either 2- or 4-dimensional spin space; tr will denote 
trace in these spaces only. 
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We next select for the system a trial density matrix of 
independent quasiparticles. 

p cc exp[—p E Ek<rakMk<rl, Trp= 1, (7) 

and choose the parameters Uk and Ek(T so as to minimize 
the free energy appropriate to p. The variational calcula­
tion is considerably simplified, however, by making a 
different choice of independent variables. For this we 
define the 4 X 4 matrix 

(akak t )=Tr{pakak t} 

l / l + w k xk \ 

H „ Ha+^k), (8) 
. 2 \ - a r k * l-w~k*/ 

or in detail, 

(8') 

Again we find that Wk and W~k are related: Since the 
exchange of operators in Eq. (8') shows that 

therefore, using definition (8), 

(9) 

(10) 

Furthermore, Wk is closely related to Uk and E^. The 
form (7) of the density matrix implies that 

fl-/(.Ek+) 
<a*«kt) = l - / ( £ k - ) 

/(-E-k+) 

^ | ( l + t a n h ^ £ k ) , 

0 

/(£-k-)J 

(ID 
where / is the usual Fermi-Dirac distribution func­
tion, and Ek is the diagonal matrix of signature 
(22k-f, £k- , — -E-k+, —-E_k_). Comparison of Eqs. (8) 
and (11) using Eqs. (4) and (5) shows that 

TFk=tanh(i/5f/kEkC7kt). (12) 

Thus, Uk is the unitary transformation which diago-
nalizes the Hermitian matrix Wk, whose (real) eigen­
values are functions of Ek(T, and so the Wk are completely 
equivalent to the Uk plus Ek as a set of variational 
parameters. However, the fact that the subsidiary con­
ditions (10) on Wk are linear, in contrast to the condi­
tions (4) and (5) on Uk, makes the minimization of the 
free energy with respect to the Wk much more con­
venient. 

The free energy 
F=(W)-TS, (13) 

may be expressed in terms of the Wk. Measuring the 
kinetic energy ek from the chemical potential /*, the 

Hamiltonian of the system is 

3 C S X O - M 9 ^ + ^ = " Z eka*Mk*+V. (14) 
k<r 

The application of a generalized Wick's theorem16 then 
gives15 

<3C>=tr(p3C) 

= £ t r { L e * ( l - ^ k ) + i E VwxW) , (15) 

and the entropy S is calculated by using Eqs. (7), (11), 
and (12) 

S = - t r ( p lnp)= - E { / ( ^ k . ) ln/(JSk.) 

+ [ l - / ( £ k , ) ] l n [ l ~ / ( £ k , ) ] } 

= - E t r { J ( l + ^ k ) l n [ i ( l + W * ) ] } -
k 

= - E t r { i ( l - ^ k ) l n [ i ( l - ^ k ) ] } • 
(16) 

Using the fact that Wk as well as its infinitesimal 
variation 8Wk must satisfy Eqs. (10), the corresponding 
variation dF of the free energy [given by Eqs. (13), (15), 
and (16)] can be cast into the form 

k ! 

1 1+Wk 

Sk— In 
(3 l-WkJ 

with the definitions 

/ ek Ak \ 

\-A~k* -J 

A k ^ - | E 7 k k ^ k ' = - A - k . 
and 

(17) 

(18) 

(19) 

Since the coefficient of hWk in Eq. (17) satisfies the re­
quirements (10), the condition for a stationary free-
energy function [_8F = 0 for any bWk satisfying Eq. (10)] 
implies 

Sk~IS-1ln(l+Wk)/(l-Wk) = 0, 
or 

Wk=tsaih^Sk. (20) 

By comparison with Eq. (12), it is seen that at sta­
tionary points, 

gk=UkEkUk^, (21) 

so that U also diagonalizes & into E. 

2. A Special Class of Variational Sta tes 

The coupled matrix Eqs. (19) and (20), with defini­
tions (8) and (18), constitute a complete description of 
the variational states leading to a stationary free energy. 

" C . Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1958); 
M. Gaudin, ibid. 15, 89 (1960). 
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In full generality, however, they are quite difficult to 
analyze, so we at first consider only a special class of 
solutions for which the equations simplify greatly. We 
will then show that this class in fact contains those 
solutions which correspond to the absolute minimum of 
the free energy, as desired. The restriction we impose is 
that Ak be proportional to a unitary matrix: 

A k A k t= |A k | 2 . (22) 

This condition then implies that (Sk)2 is proportional to 
the unit matrix [from Eq. (18)] and, hence, [from (21)] 
that 

(<g k ) 2 =(E k ) 2 =6 , 2 + |A k | 2 ^E k
2 . (23) 

Thus, £k<r=£-kff is independent of a. A further conse­
quence is the reduction of Eq. (20) to 

^ k = ( £ k / £ k ) t a n h i / 3 £ k , (24) 

which now splits into the pair of 2 X 2 relations 

^ k = ( € f c / E k ) t a n h | / 3 £ k , (24') 

xk= (A k /£ k) t anhi0E k . (24") 

The latter, when combined with Eq. (19), becomes the 
familiar gap equation 

A k = - J £ V W ( A k ' / £ k 0 tanhi/3Ek<, (25) 
k' 

where Ak is now a 2X2 matrix, and E k is given by Eqs. 
(22) and (23). 

One type of solution of Eq. (25) corresponds to the 
ESP, and is characterized in the present formalism by 
Ak being diagonal. More explicitly, if the potential is 
restricted to a p-w&ve attraction only, 

Vw=-Wl{k,k')k'kf, (26) 

AM have shown, with the assumptions of the standard 
model [_V\{kfi) constant and nonvanishing only if k 
and k' lie inside a shell | ek\ <co containing 4coiV"o states] 
and weak coupling, that the ESP zero-temperature gap 
function leading to the lowest ground-state energy 
(3C)ESP is, 

AkESP=2w expi-l/NoVr) 

/Yxl(k) 0 \ * 
X ( 0 . 9 4 ) ( 4 T T W A ) . (27) 

However, Eqs. (25)-(26) have many other solutions; 
most especially, we exhibit 

Ako=AJ , . J 
\ "z K,x\~'/Ky/ 

= M — ) ( . ) , (28) 

[consistent with Eq. (22)] where Ak is now isotropic. 

. R . W E R T H A M E R 

With this ansatz, Eq. (25) reduces to 

A * = i E 7i(M0(Ajb'/Ejb') tsmhiPE* , (29) 
k' 

which with Eq. (23) are the same gap equations as in the 
s-wave case, the radial part V\(kfi) of the ^>-wave 
potential simply replacing the s-wave interaction. At 
least for the model potential used above, the corre­
sponding ground-state energy (JC)0 is, in fact, lower than 
(3C)ESP, since an explicit calculation reveals 

<3e)Esp-<3C>o 

= 27V0co
2 exp ( -2 / iV r o7 i ) [ l - (0.94)2]>0. (30) 

3. Absolute Minimum of the Free Energy 

More generally, though, we can demonstrate that for 
any ^-wave potential (26), the "isotropic" solution 
given by Eqs. (28)-(29) leads to the absolute minimum 
of the free energy corresponding to a variational state 
of the form (7), and is, thus, the best approximation of 
this form. To carry out this proof, we shall use a 
generalization of the method of Balian and Mehta.17 

Attaching the subscript 0 to all quantities associated 
with the solution (28)-(29), we obtain from Eqs. (13) 
and (15), 

k 

+ i E Vw(xkW-xV0x
k'o)} + T(So-S). (31) 

kk' 

By using Eqs. (24'), (24"), and (25) in the form 

ek = (Eko coth%f3Eko)w
ko, 

E Fkk'*k'o= - 2 ( E * 0 cothipEk0)x\, 
k' 

and again recalling definition (8), we can recast the free-
energy difference (31) as 

F-F0=l E t r{ (^ -x k o) tMkk ' (^ k , -x k ' o )} 
kk' 

+ H ( £ t o cothij8EM) tr{(wk-w\y)+Q-Q0, (32) 
k 

where 

M k k , = 2 (£ M coth i /3£ M )6kk '+F k k - , (33) 

G ^ - i E ( £ * o c o t h i / 9 E M ) tr{ (W^)-TS. (34) 
k 

When considered as a function of the Wk, the quan­
tity Q [in which S is given by Eq. (16)] has stationary 
points when 

5<3=—1 E tr{dWkl(Ek0 cothil3Eko)Wk 

k 
- / 3 - 1 l n ( l + T F k ) / ( l - P F ' k ) ] } = 0, 

17 R. Balian and M. L. Mehta, Nucl. Phys. 31, 587 (1962). 
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that is, using Eqs. (24) and (20), when 

1 1+W\ 1 1+Wk 

In = — I n , 
W\ \-W\ Wk 1-W* 

which is equivalent to 

(Wk)*=(W*o)*. 

Since Q depends only on (Wk)2, Q = Qo&t the stationary 
points. Moreover, the behavior of S at the boundaries of 
Wk (whose eigenvalues must lie between —1 and + 1 ) 
implies that Q cannot attain its absolute minimum on 
the boundaries. Thus, the minimum occurs at the sta­
tionary points, so that 

Q-Qo>0. 

If in addition the matrix Mkk/ is positive semidefinite, 
then it is evident from Eq. (32) that F —F0>0, and the 
isotropic solution does indeed give an absolute minimum 
F0 of the free energy. This positive semidefiniteness con­
dition is exactly the same as in the s-wave case, since by 
saturating the matrix M with an arbitrary vector 

? k = ( 4 7 r ) 1 / 2 Z 6 ^ F , m ( ^ ) , ' 
lm 

we find 

kk'm 

+ £ 2 ( £ M c o t h i / 3 £ M ) | ^ » | 2 . (35) 

For / = 1 and for each m, the summand is identical to 
what would have been obtained with an s-wave po­
tential Fkk'= — Fi (&,&')> as can be seen also from the 
gap Eq. (29). But it is proved in Ref. 17 that the matrix 
in the right-hand side of Eq. (35) is in general positive 
semidefinite (and so M also) precisely for that solution 
Eko of Eqs. (23) and (29) which gives the lowest free 
energy for the state with s-wave pairing. The ^-wave 
variational solution (28), then, is actually one of lowest 
free energy. 

The method used here is indeed not restricted to the 
p-w&ve case. The expression (32) is valid whenever Fo 
is a stationary value of the free energy associated with a 
gap matrix Ako satisfying Eq. (22). An application to the 
question of the existence of a mixture of s- and £-wave 
pairing18 (when the potential Fkk' contains both waves) 
is given in Appendix A. 

III. ROTATIONAL PROPERTIES AND DEGENERACY 

In the previous section, we have proved that the 
equation 8F=0 does not have any solution of free 
energy lower than Fo. However, this minimum is de­
generate, and other solutions besides (28) of the same 
energy exist. The family of minimum solutions Ak^# can 

18 N. R. Werthamer, H. Suhl and T. Soda, Eighth International 
Conference on Low-Temperature Physics, London, 1962 (to be 
published). 

be deduced from Eq. (32); it is constructed by 
multiplying Ak

0 by a phase factor e** and replacing 
Yim(k) by Yim(Rk), where R is a rotation in the mo­
mentum space only. Whereas the first type of degener­
acy is associated as usual with the nonconservation of 
particle number in the canonical transformation (2) and 
with the invariance of 3C under the gauge group 
dka —> dkffe

i<pl2
y the second type is connected with the 

nonconservation of spin in (2) despite the invariance of 
3C under rotation of the spin and momentum spaces 
separately. In addition to the total particle number, the 
total spin and orbital angular momentum of the trial 
system do not have well-defined values. (Expressions 
for the mean-square fluctuation of these quantities are 
presented in Sec. IV.) Nevertheless, states with a well-
defined total spin and orbital angular momentum may 
be built by superposition of solutions with different 
values of R (weighted with an appropriate rotation 
matrix) in exactly the same way that the BCS state of 
fixed number of particles is obtained by mixing solutions 
with different values of <pP These angular momentum 
eigenstates, although degenerate in this approximation, 
would appear in an exact theory as low-lying rotational 
collective excitations. 

Additional understanding of this degeneracy may be 
gained by studying the rotational properties of the trial 
density matrix associated with the minimum solution 
(28). By substituting Eqs. (4), (21), (18), and (28) into 
(7), we can express this density matrix as 

P o < * e x p { - / 3 [ £ e * a k , W + £ A,(2TT/3)1 /2 

kff kacr'm 

X(hhh*,W\ l f»>Fim*(l)a k , ta^ k , , t+H.c. ]} . (36) 

In this form it is easy to check that po is invariant under 
a full rotation, although not under rotations of the spin 
or momentum spaces separately. More precisely, the 
system is composed of bound pairs each having spin 
5 = 1 and orbital angular momentum L = 1, coupled to a 
total angular momentum 7 = 0 . 

These conclusions become even clearer if instead of 
using a basic set of electron wave functions with 
quantum numbers k and c, we use a spherical wave 
basis characterized by radial wave number k, orbital 
angular momentum /, and total angular momentum j 
with projection/x. The density matrix (36) then becomes 

Poaexp{—/3X) [e/b E akij^akiJfl+Ak(j+%)m 

kjii l=j±\ 

X(ii/x-M|00)a&)y+i,y,Mi'afc,y_iiy,_Mt+H.c.]}, (37) 

showing that instead of the canonical transformation 
(2), the ^>-wave state could also be obtained by pairing 
electrons of same k and j , opposite #, and l=jdz%. The 
Clebsch-Gordan coefficient now reveals explicitly that 
for this solution each pair has zero total angular 
momentum. 

19 P, W. Anderson? Phys. Rey: 112? 1900 (1958), 
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Still another choice of basis which also sheds light on 
the rotational characteristics is the helicity represen­
tation.20 In this representation, the spin of a particle is 
quantized not along the z axis, but rather along the 
direction of the momentum. The helicity quantum 
number X is taken to be + (—) when the spin projection 
is parallel (antiparallel) to k. Thus, the unitary trans­
formation between electron operators in the two bases 
may be taken as the spin rotation 

exp(—idkicry) exp(—t^k§cr,), 
or 

ak+= cos iM i , p k akt+s in^ k er -*^ka k i , 

a k _= - s i n | ( 9 k ^ ^ k a k t + c o s p k ^ ^ k a k i , 

where (6k,<pk) are the polar angles of k with respect to 
the z axis. The gap matrix rewritten in the helicity 
formalism now takes a very simple form: In the usual 
BCS case, 

Axvk=XA*5Xx', (39) 

whereas in the p-w&ve case, Eq. (28) is equivalent to 

Axvk=A*8xx'. (390 

An alternative way of forming these superconducting 
states is thus seen in both cases to be the pairing of 
electron states of opposite momenta but equal helicities; 
the factor of X difference supplies the needed change of 
parity. The density matrix (36) transformed into the 
new basis is simply 

po <* exp{ — /3[]T ekak^akx 
kX 

+ i £ Axx'k<*kA+a-kx<t+H.c.]}, (40) 
kXX' 

and is, therefore, clearly rotationally invariant in both s-
and p-w&ve cases. The values of the spin and orbital 
angular momentum of a pair follow immediately from 
the forms of Eqs. (39) and (39') and the work of Jacob 
and Wick.20 

The previous developments apply only to the special 
solution po corresponding to Ak

0 [Eq. (28)], and the 
physical picture of the other solutions PR of the same 
energy is less simple. In particular, the rotation R of the 
momentum space with respect to the spin space 
decouples the spin 5 ,= 1 of each pair from its angular 
momentum L = l , so that each pair no longer has the 
well-defined total angular momentum J = 0. 

I t is also worth remarking that whereas the canonical 
transformation of plane-wave states initially proposed 
in Eq. (2) mixes four such states, the resulting super­
conducting system is, in fact, composed just of pairs, as 
seen in expressions (37) and (40) for the associated 
density matrix p0, or in similar expressions for p#. This 

20 M. Jacob and G. C. Wick, Ann. Phys. 1, 404 (1959). 

is a special case of a general theorem21 which states that 
an arbitrary canonical transformation can always be re­
garded as a pairing of the BCS-Bogoliubov type between 
single-particle states in an appropriate representation. 
The ESP method overlooked the fact that this ap­
propriate representation was not the usual plane wave 
basis, but rather the spherical wave representation, Eq. 
(37), or the helicity representation, Eq. (40). 

IV. EQUILIBRIUM AND TRANSPORT PROPERTIES 

1. Equilibrium Properties 

The single quasiparticle excitation spectrum of the 
state with ^-wave pairs is given by £&= (e^+A^)^2, 
combined with Eq. (29) to determine A&, and is iso­
tropic. Thus, the system behaves exactly as does the 
usual BCS state with respect to every equilibrium 
thermodynamic property, or other property dependent 
only on the spectrum or density of states. (The density 
of the rotational states mentioned in Sec. I l l is small, 
and just like the usual collective states, their contribu­
tion is negligible.) For example, the specific heat is 
exponentially small at low temperatures; there is no T* 
contribution as predicted by the ESP solution since the 
energy gap here has no nodes. As another item, the thin 
film tunneling characteristics are identical with the 
BCS state. 

2. Computation of Nonequilibrium Properties 

The nonequilibrium behavior of the system, on the 
other hand, does exhibit certain significant differences 
from that of the BCS state. These properties, such as 
driven responses and absorptions, correlations and 
fluctuations, are described in a convenient and unified 
manner as special cases of double-time Green's func­
tions.22 If CL(t) and (&(t) are Heisenberg operators corre­
sponding to observables, then we define the function 

G(t-0^-i(T{®(t)a(t')})+i(®)(a), (41) 

where T is the time-ordering operator. When a and (B 
are both one-particle operators of the form 

a = £ 4 W ' k k W f l k ' r ' , (42) 
kkVcr' 

then G is closely related to the usual two-particle Green's 
function. I t is shown in Appendix B that for a supercon­
ductor with a spin pairing restricted only by the unitary 
requirement (22) on Ak and the form (42) for a and (E, 

21 C. Bloch and A. Messiah, Nucl. Phys. 39, 95 (1962); B. 
Zumino, J. Math. Phys. 3, 1055 (1962). 

22 See, for example, the review article of D. N. Zubarev, Uspekhi 
Fiz. Nauk 71, 71 (1960) [translation: Soviet Phys.—Uspekhi 3, 
320 (I960)], and the included references. 
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G is given by 

G(t)=(2<ir)-lf duerf'Gbu) 
J —oo 

G(< 

(43) 

'«) = ! E tr W 1 + — ) W l + — )-Bk'*^4-k''-k • — ——-
" ' IL \ Ej \ EkJ Ek Ek>-Lo>+Ek,-Ek+iri u+Ek— Ek-iv J 

+ [ £ k -> - £ k ] + [ £ k , -+ - £ k . ] + [ £ k -*• - £ k , £ k ' -> - £ k ' ] • (44) 

The linear driven response function is readily ob­
tained from G(w). To define this function,22 we consider 
applying to the system an externally driven time-
dependent perturbation, of the form 

3C'(t) = \(t)a. (45) 

We then inquire as to the average value at the time t of 
any other observable (B. The linear response is defined as 
the first-order change in the measured quantity due to 
the presence of the (weak) perturbation 

j R ( / - 0 = «<©(0>/«X(0|x-o 

= -i<[(B(0,Ct(0]>©(/-0. (46) 
A straightforward comparison of spectral representa­
tions22 shows that R (co) is obtained from the form (44) of 
G(co) by the simple recipe of replacing co—irj everywhere 
it occurs by co+ir;.23 

3. Spin Susceptibility 

The linear response most characteristic of the state 
with ^-wave pairs is the spin susceptibility tensor X^-. 
In this case the perturbation is a uniform static magnetic 
field in the direction j assumed to interact only with the 
electron spins, and the response is the total induced spin 
magnetization in the direction i. Thus, jBkk'=/i0crt5kk', 
where the <Ji are the Pauli matrices, Akk' has the same 
form, and 

X i ;= JR(a;=0) = ReG(co=0). (47) 

Now the most general matrix Ak can always be written 
in the form 

Ak=X!»' dkVav(X2j v = 0, 1, 2, 3 , (48) 

where cro=o'icr20-3=i. I t proves more convenient at this 
point to characterize the gap matrix by the d*v than by 
the actual elements of Ak itself. By referring to Eq. (19), 
it may easily be seen that dko is even in k, while dk 
(*>=1, 2, 3) is odd. Thus, dk0 is the part of the gap 

23 As defined here, the linear response does not include the effect 
of collective excitations, as would for example a treatment using 
the random phase approximation (see Ref. 19). The collective 
excitations may be restored in the Green's function context by the 
procedure of G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 
(1961), applied especially to the superconducting gauge-invariant 
electromagnetic response by V. Ambegaokar and L. P. Kadanoff, 
Nuovo Cimento 22, 914 (1961). The conclusions of the present 
paper would not be affected. 

matrix associated with the even-parity part of the po­
tential (e.g., the s-wave BCS part), whereas dk is as­
sociated with the odd-partial waves (such as the ^-wave 
part). Inspection of Eq. (28) shows that the isotropic 
^>-wave pair solution Ak

0 is expressed in this notation as 
simply dk=Afc£, ^ ko=0, while the BCS solution is 
dko=A*, dk=0.2 4 

Substituting Eqs. (44) and (48) into (47), we may 
evaluate the spin trace and obtain 

k 

\df(E) 1 

{ dE E2L dE 

•df(E) l - 2 / ( £ ) -

2E 

XReididf-emdod^-d-dnij) , (49) 

where we have dropped the indices k. I t is interesting to 
note that in general the susceptibility has full tensor 
character, and the induced magnetization is not the 
same for all directions of the applied field; this is true of 
the ESP solution, for instance. The isotropic ^-wave 
solution, Ak

0 or Ak#, on the other hand, leads to a 
scalar susceptibility, X#=X5#. When the standard 
model potential is used, its ratio to the normal Pauli 
susceptibility is given by 

x s /x n —^- \ -^y , (50) 

x,/x 

FIG. 1. Ratio of the superconducting to normal paramagnetic 
spin susceptibility, as a function of reduced temperature. The dash-
dotted, solid, and dashed curves give the theoretical predictions for 
the s-wave, ^-wave, and equal spin-pairing states, respectively. The 
experimental points are taken from the Knight shift measurements 
of Refs. 4 and 5. 

24 Also in this notation the ESP solution has d^=kXzAk, dkO=0. 
The degeneracy under rotation of the spin space studied in Sec. I l l 
is connected with rotations of the vector dk. 



1560 R . B A L I A N A N D N . R . W E R T H A M E R 

with Y being the ratio previously calculated by Yosida7 

for the BCS state, 

Y= 
Jo 

^esech 2 B/3 (e 2 +A 2 ) 1 / 2 ] . (51) 

These quantities are plotted in Fig. 1 as a function of 
temperature. 

I t is curious to note the good agreement between the 
prediction (50) and the experimental values obtained 
from Knight-shift measurements on mercury4 and tin.6 

To regard the data as indicative of a ^-wave pair state 
actually occurring in these elements is quite tempting. 
In fact, although the effective electron interaction de­
rived in the BCS theory is an s-wave attraction, AM10 

have conjectured that the crystalline structure of some 
elements might tend to favor the p wave. In order to 
confirm this hypothesis, however, one not only must 
verify that the p-w&ve state in no way contradicts any 
other existing measurement on Sn and Hg, but also 
must consider whether a Knight-shift measurement does 
in fact provide information on the electronic spin sus­
ceptibility. On both counts considerable ambiguity 
exists: As will be discussed in the following, the state is 

not altogether physically acceptable, but yet cannot be 
ruled out entirely. Furthermore, recent N M R experi­
ments on the hard superconductor VsGa have shown25 

that in this instance much, if not all, of the Knight 
shift can be attributed to orbital paramagnetism. These 
authors also present arguments for a similar situation 
occurring in pure vanadium6; the implications for the 
experiments on Sn and Hg are not as yet clear. We re­
turn to these questions again in the concluding section. 

4. Electromagnetic Response 

Complementary in structure to the spin susceptibility 
is the electromagnetic response,26 including such im­
portant experimental tests of the superconducting state 
as the Meissner effect, infrared reflection and transmis­
sion, and microwave surface impedance. Here, the 
perturbation is an applied vector potential A(r)e~io>t, 
with the induced current density at the point r as the 
observable of interest. If we consider only the paramag­
netic part of the current, then we take 

-Akk/ = Bkk,= (e/2tnQ)(k+k')eW-u-r, (52) 

with 0 the volume, and the response tensor is 

1/ e ^2 

#(r,r ' ; «) = - ( -
2\2m. 

\ 2 r d6l 

J J (2TT 

d*k dW 

(2TT)3 (2TT)3 
-(k+kO(k+kO^(k-k' ).(r-r') I«) dodo'*+A-d'*-

EE' 

X- -[£- -£]+[£ ' -» - £ ' ] + [ £ - + - £ , £ ' - > - £ ' ] (S3) 

Since all reasonable perturbations A(r) vary slowly over the lower half-plane, and using Eq. (24), the expression 
distances comparable to a lattice spacing, so that reduces to 
|k— k r | « & F , we can replace dodo*+d'd'* in Eq. (53) 
by | A*|2; thus the s-wave and^-wave pair states lead to C((B,G) = i £ tr{Bk'k(l+wk)Akk'(l-wk') 
identical expressions and are electromagnetically in- k k-r k,_k k , n 

distinguishable. +B x A x T} . (56) 

The density-density correlation in particular, computed 
by AM for the ESP solution and found to be anisotropic, 

A set of quantities closely related to the response here becomes (for r ^ r ' ) 
functions, not readily measured in a superconductor but 
still useful for visualizing the nature of the state, are the C(p<r(r),pa> (rr)) = — | \wa(T> (r—r') |2 

5. Correlation Functions and Fluctuations 

correlation functions. These are defined as 

c((B,a)-((Ba)-((BXa), 
+ 1 ' ( r -r ' ) | (57) 

(54) 
where wa<r>(r) is the Fourier transform of wco>

k. The first 
and are seen to be just the equal-time Green's functions, term represents the negative correlation associated with 

repulsion of particles of like spin due to the Pauli 
C ((B, d) = t hmjj\t—t)- (55) principle; the positive second term represents the attrac­

tion of correlated (or bound) pairs. For the £-wave 
Substituting Eqs. (43) and (44), closing the co contour in solution, 

C(p< r(r ,^W(0))=-f i^ 
r dzk 

J (2TT)3 

€fc 
-jo(kr)— tanh|/3Efc + 

/sin20 cos20\ 11 

\cos20 sin20, »/l2 J 
ji(kr)— tanh|/3Efc 

(2TT)3 Ek 

(58) 

25 A. M. Clogston, A. C. Gossard, V. Jaccarino, and Y. Yafet, Phys. Rev. Letters 9, 262 (1962). 
26 D. C. Mattis and J. Bardeen, Phys. Rev. I l l , 412 (1958); A. A. Abrikosov, L. P. Gor'kov, and I. M. Khalatnikov, Zh. 

Eksperim. i Teor. Fiz. 35, 265 (1958); 37, 187 (1959) [translations: Soviet Phys.—JETP 8, 182 (1959); 10, 132 (I960)]. 
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Although the correlations of densities of like and unlike 
spins separately are anisotropic, averaging over spins 
leads to a completely isotropic result. Because of the 
first-order spherical Bessel function in the second term 
instead of the '̂o found in the corresponding BCS ex­
pression, the correlation C(p,p) does have different 
radial dependence in the two states; the difference only 
occurs for small r, however, and is masked by the Pauli 
exclusion term. 

The density-current correlation was also computed by 
AM, and for the ESP was found by them to be non-
vanishing. In general, this correlation is 

C ( j I ( r ) , p , ( r ' ) ) = ( l / m ) 

X | K „ ' ( r - r ' ) | 2 V arg*„. (r -r ' ) , (59) 

which for the isotropic ^>-wave solution of Eq. (28) 
reduces to 

C(j„(r,0),p„,(O)) = —sin 2 0 
mr 

in20[ \ 
\ 0 - 1 / 

X 
! / 

dlk A* 
ji(kr)— tanri5/3.Ej 

(2x)3 Ek 

(60) 

Thus, there is an equatorial current about a fixed point 
with a distinguished spin direction, although upon 
averaging over spins this current correlation vanishes. 
I t follows that no observable surface currents are to be 
expected here, contrary to the ESP case. I t is also 
interesting to note that Eq. (60) gives just the correla­
tion to be expected for two otherwise isolated spin-J 
particles bound into a n L = l , S = l , / = 0 state. For the 
degenerate ^>-wave solutions, p#, of Sec. I l l , the correla­
tion pattern is less simple, since the spins must be 
rotated by R. 

Expression (56) is also useful for computing the 
fluctuations of observables from their mean. By sub­
stituting appropriately for A and B, we find for particle 
number 31 and total spin S, 

(9l2)-(9l)2 = E [4 sech2(i/3Ek) 
k 

+ | A k / E k | 2 t a n h 2 ( ^ £ k ) ] , (61) 

( S 2 ) - ( S ) 2 = f E H s e c h 2 ( ^ E k ) 
k 

+ | | d k / E k |
2 tanh2 ( | /5£ k)] . (62) 

The first terms in these expressions represent the 
statistical fluctuations in the thermally excited normal 
electrons, while the second terms give the uncertainties 
due to the trial density matrix failing to conserve these 
quantum numbers, as discussed previously in Sec. I I I . 
The mean square fluctuation in particle number is the 
same for both s-wave and ^-wave states, whereas in the 
case of total spin, it is just the pairs of parallel spins 
which contribute to the indefiniteness. 

6. Absorptions 

In addition to the real response, a second charac­
teristic property of a driven system is the absorption. 
The two most significant measurements of this type in 
a superconductor are acoustic attenuation and N M R 
relaxation; the temperature dependences of the ratio of 
these quantities to their values in the normal state have 
been of great importance in verifying the electron 
pairing hypothesis of BCS. In order to compare the 
predictions of the p-w&ve pair state proposed here to the 
successful BCS formulas, we note that the relevant 
absorption coefficient or relaxation time is derived in a 
standard manner from the probability P for transition 
between suitably weighted initial and final electronic 
states, due to the application of the weak perturbation 

3Cf(t) = \e-i0}ta+K.c. 

This transition rate is given by the usual Golden Rule 
formula, which in turn is related through the spectral 
representation to the retarded Green's function via 

P = - 2 \ 2 I m £ ( a > ) , (63) 

where R is computed for (B= (fct. 
In the case of the acoustic attenuation,27 the per­

turbation is an effective potential with wave number q 
and frequency co obeying the phonon-dispersion law, 
co/#= sound velocity. This potential couples to the 
electron charge density, so that -4 k k ' = 5k ' ,k_q, and 

P = 7 r A 2 L 5 k _ k ^ 
kk' HK> <W(/*+d-d'*-

EEf 

XU(Ef)-f(E)2H^~E+Ef)+lE/-^-Ef-] 

+lE->-E,E'-+--E'l\. (64) 

In the long-wavelength limit, for q<£kF, the ^>-wave 
state leads to precisely the same result for the transition 
probability as does the usual BCS state. The acoustic 
attenuation in both cases measures the isotropic gap in 
the energy spectrum, A&. 

For the case of the N M R longitudinal relaxation 
time, TV8 on the other hand, the perturbation is the 
hyperfine interaction of nuclear and electron spins. 
Thus 

P m ^ = - 2 ( l - ^ - » * ) ~ l 

XXXH I*Im) I m £ ( r „ i v ; w»w)<w\ I„ \ n), (65) 
vv' 

where n and m are states of the nuclear system differing 
in energy by wnw, I„ is the nuclear spin at the site v, and 

27 T. Tsuneto, Phys. Rev. 121, 402 (1961), and references given 
therein. 

28 L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959); 
L. C. Hebel, ibid. 116, 79 (1959). 
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R is a tensor to be computed for Akk' = §<^£i(k'-k)*^,'', 
Bkk ' the same with v' *-» v. Since the interaction of one 
nuclear spin lv with another \v» is not significant, we 
have v=v' in Eq. (65). Also, since the energies of the 
nuclear transitions are small compared to the gap, and 
since the nuclear spins are disordered, to a good ap­
proximation only 

ImEX«(r , r ;w) 
i 

= JxX2 £ {Re[3(££'+ee'+<W*)-d-d'*]/.E£'} 
kk' 

X[/(£W(£0]S(£-£'-co) (66) 

is needed for computing P. Since dk is odd in k, the 
d« d'* term drops out; the ee' term vanishes by reason of 
symmetry about the Fermi surface. The coherence 
factor 1+Re (dodo */EE') differs for the s- and />-wave 
solutions, although at most by a factor of 2. But, in any 
event, the result for P is formally infinite, due to the 
uncompensated infinity in the superconducting density 
of states at the gap edge; an artificial level broadening 
must be introduced to obtain sensible results. The 
amount of broadening is customarily determined by 
fitting the experimental data at one point, so that only 
a relative temperature dependence of T\ is obtained. In 
the absence of reliable estimates of this broadening from 
first principles, the experiment is entirely insensitive to 
an over-all numerical factor. Here again, both the BCS 
and p-w&ve pair states are consistent with observation. 

V. EFFECT OF IMPURITIES: CONCLUSIONS 

Upon surveying the above calculations comparing the 
theoretical predictions in various experimental situa­
tions of the BCS state with the alternative system of 
p-w&ve pairs, an over-all picture emerges. The only 
mathematical distinction between the two systems oc­
curs in the coherence factors (the matrix elements be­
tween electronic states). For those perturbations which 
are spin-independent, the BCS term A&A&' is replaced in 
the latter state by AkAk'k-kf. But in two of the ex­
amples of this type [electromagnetic response, Eq. (53), 
and acoustic attenuation, Eq. (64)] the perturbation is 
of long wavelength, thus requiring the momentum 
transfer k—k' to be small; the additional factor k-k! has 
little or no effect on the response to such perturbations. 
In the third example [density-density correlation, Eq. 
(58)], short wavelengths are involved; however, the 
effect of the factor k-k' in the term containing Ah is 
masked by the main Pauli exclusion term. On the other 
hand, when the perturbation is spin-dependent as in 
Eqs. (49) and (66), the analogous BCS term in the 
(tensor) coherence factor, AkAk'dij, is replaced by 
AkAk'Z%(kik/+kikj)+k'k'dij2* These two terms are 
always different no matter what the momentum trans­
fer, and the resulting responses indeed differ; as ex­
amples, we have computed the spin susceptibility [long 

wavelength, Eq. (49)] and the NMR relaxation time 
[short wavelength, Eq. (66)]. However, we have seen 
that neither of the corresponding measurements is a 
sufficiently direct and unambiguous test of the theory to 
make a decisive choice between the two states, although 
we have found some indication from the spin suscepti­
bility that the ^-wave state is preferable. To make the 
experimental distinction clear-cut, a spin-independent 
perturbation of short wavelength is required. 

The addition of dilute, random impurities to a pure 
superconducting sample satisfies these criteria. The 
effect on the critical temperature of such alloying, both 
by nonmagnetic and paramagnetic impurities, has been 
previously calculated in the BCS context by Suhl and 
Matthias,29 and by Abrikosov and Gor'kov.30 These 
authors predict that Tc is strongly depressed by mag­
netic impurities, while affected very much less, if at all, 
by nonmagnetic impurities. This is precisely the experi­
mental situation at small concentrations: Matthias 
et al.31 find Tc drops almost to zero with the addition of 
less than 1% paramagnetic rare earth in superconducting 
lanthanum, while Lynton et al.Z2 measure changes of Tc 

due to nonmagnetic impurities in millidegrees over a 
similar concentration range. 

To estimate the corresponding results expected from 
the p-w&ve state, it is easier to follow here the perturba­
tion theory approach of Suhl and Matthias,29 than the 
more elaborate treatment of Abrikosov and Gor'kov,30 

which yields qualitatively similar conclusions. The 
former authors compute the change in the free-energy 
difference between normal and superconducting phases, 
and then invoke the law of corresponding states to 
relate this to the change in Tc. To second order, the 
change in free energy due to a time-independent per­
turbation 3C' is 

M7=<3C'>+Jtf(« = 0), (67) 

where the Green's function is computed for <2=(B=3C'; 
for impurities at sites v, 3C' is just the sum of contribu­
tions from each impurity separately, 

^ k k ' = E X(k-kOe-i(k-k,)"r% nonmagnetic, 

= [/(/+l)]-1/2EX(k-k,)^~i(k-k'),r^-I,, 

magnetic. (68) 

Substituting Eq. (44), and averaging over random im­
purity configurations (and in the case of magnetic 
impurities, over random impurity spin orientations as 
well), we obtain per unit volume and to first order in the 

29 H. Suhl and B. T. Matthias, Phys. Rev. 114, 977 (1959). 
30 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 

39, 1781 (1960) [translation: Soviet Phys.—JETP 12, 1243 
(1961)]. 

3 1B. T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. 
Letters 1,92 (1958). 

32 E. A. Lynton, B. Serin, and M. Zucker, J. Phys. Chem. 
Solids 3, 165 (1957). 
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impurity concentration, £, 

^ = i f E |x(k-kOi2 —J 

kk' IL EE' E-E' J 

+ [ E ^-_ £ ]J . (69) 
We have defined 

s wave p wave 

nonmagnetic 
— 1 \h-kf magnetic. 

Proceeding through the integration of Eq. (69) step by 
step with Suhl and Matthias, we find to lowest order in 
A/a> 

8(Fs-Fn)^^N^A [dkdkf\\(k-kf)\2(^7), (70) 

the integrations to be an average over the Fermi surface; 
we have used the fact that X(k—k') is a slowly varying 
function of | k | . We recover the result29,30 that in the 
BCS state nonmagnetic impurities have no effect (in 
this approximation) on the free-energy difference, while 
the exchange scattering of paramagnetic impurities 
forces the superconducting and normal phases closer in 
free energy, linearly with the concentration. 

These conclusions are not, in general, true for the 
^-wave pair state. Since the interaction between the 
conduction electrons and an impurity is short ranged, 
probably localized to the immediate vicinity of the im­
purity site itself, the perturbation extends only over a 
distance comparable to the lattice spacing, and as we 
remarked earlier very large momentum transfers of 
order 2kp are allowed.^In fact, |X(k—k')J2 is certainly 
not such as to restrict k to the vicinity of k' in Eq. (70). 
The exact cancellation of the two last terms, therefore, 
occurs only for 7 = 1 , that is for an s-wave state with 
nonmagnetic impurities. The prediction for the ^-wave 
pair state, then, is that magnetic impurities would tend 
to depress the transition temperature to roughly the 
same degree as for the BCS state, and that in an equiva­
lent concentration nonmagnetic impurities would lower 
Tc even more, since X2 is likely to be a good deal larger in 
this case. 

Such a situation appears to be contradictory to the 
behavior of real materials, including Sn and Hg. Ex­
periments have generally shown that for equivalent 
concentrations, magnetic impurities tend to depress the 
critical temperature much more than nonmagnetic ones. 
The hypothesis of a p-w&ve attraction for Sn and Hg, 
which we introduced in order to explain the finite value 
of the spin susceptibility would, therefore, be justified 
only if it were found that both kinds of impurities have 
effects of the same order of magnitude for these mate­
rials. Unfortunately, only the effects of nonmagnetic 
impurities in Sn have been studied,32 but since they do 

not appear to be anomalously large, such an eventuality 
would seem unlikely. Therefore, even if the Knight 
shift experiments are a measure of the spin susceptibility 
of the conduction electrons,25 the agreement of the data 
on Sn and Hg with the predictions of a p-w&ve pairing 
theory is probably a coincidence. 

More generally, the possibility that a p-w&ve pair 
state might be observed in some materials has already 
been considered by AM.10 We have seen that it is a very 
delicate question to distinguish experimentally such a 
state from the usual BCS state: Only a direct and 
unambiguous measurement of the spin susceptibility in 
a bulk sample (experimentally unfeasible, if not im­
possible), or an anomalously large effect of nonmagnetic 
impurities would be decisive tests. Moreover, real ma­
terials always contain at least a slight concentration of 
nonmagnetic impurities; while they do not dramatically 
affect a BCS state, they considerably increase the free 
energy of a p-w&ve pair state. Superconducting transi­
tions of the p-w&ve type, if they exist, would therefore 
have to be looked for only in extremely pure samples. 

A similar situation arises in the cases of a d-wave 
attraction, and in particular in the problem of the pro­
posed low-temperature superfluid phase of liquid He3.11 

Although here the impurities are not fixed scattering 
centers, their effect is expected to be much stronger than 
in the BCS theory, and might explain why the proposed 
superfluid phase has not been observed. 
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APPENDIX A: MIXTURE OF DIFFERENT 
PARTIAL WAVES 

In the body of the text we have considered an inter­
action in a pure angular momentum state, either only 
s wave or only p wave. The question naturally arises 
whether, if the interparticle potential is attractive in 
both partial waves, it might not be energetically favor­
able to form a state containing both s- and p-w&ve pairs 
simultaneously. An indication was gained,18 from direct 
computation with a simplified model, that states of 
mixed angular momenta are possible, but only for 
special and quite restrictive potential shapes. However, 
some general statements on this problem can be made, 
using the positive-definiteness criterion on the matrix M 
of Sec. I I . 

If the potential Fkk' is resolved into s- and ^-wave 
parts, V=VS+VP, and quasiparticle energies Ek8 and 
Ekp are found which, respectively, minimize the free 
energy computed with each of the potentials separately, 



1564 R. B A L I A N A N D N . R. W E R T H A M E R 

then 

and 
Mkk>

ss=2(Ek* cothyEk*)5kk,+ Vkk>
s (Al) 

Mkk>
pp^2{Ek

p coih±{JEkv)5kk,+ Vkk>p (A2) 

are both positive-definite matrices. If, on the other 
hand, we also find the matrix 

M**=\\2E* coth%pE*+V9\\ (A3) 

to be positive definite, then it will be true from (A2) and 
(A3) that \\2E* cotiiipE*+V\\>0, and Eq. (32) then 
implies that the solution of lowest free energy with the 
combined potential is the pure p-w&ve state. Similarly, 
if M*p>0, then the pure s-wave state minimizes the 
combined problem. Thus, a solution with $ and p pairs 
occurring simultaneously can exist and lead to a mini­
mum free energy only if the potentials are such that 

M8S and Mpp>0, Msp and Mp8>0. (A4) 

In particular, Eqs. (A4) cannot all be satisfied if Vs 

and Vp both have the same radial shape, and as was the 
conclusion of Ref. 18, a mixed solution is then not pos­
sible. Also, for the standard model potential, the 
inequalities (A4) at r = 0 become18 

exp(l/NQVp) a>p smh(l/N0V
p) 

(A5) 
exp(l/N0V

s) a>s smh(l/N0V
s) 

In the weak-coupling limit, these inequalities reduce to 

the equality ws exp(— l/N0V
s) = a>p exp(—l/N0V

p); 
the existence of a potential producing a mixture of s-
and p-w&ve pairs is, therefore, mathematically possible, 
but physically quite unlikely. 

I t is interesting to point out the connection between 
these results and the work of Bardasis and Schriefler33 on 
the collective excitations of a system in a pure s-wave 
state, but with a potential also containing some attrac­
tive p wave. These authors showed that the s-wave 
state becomes unstable with respect to the formation of 
excitons when VP>VS (for cbp=6os and in the weak-
coupling limit), implying that there exists some solution 
of the variational equations of energy lower than the 
s-wave solution. But on the other hand, AM found that 
the energy of the ESP state was higher than that 
of the s-wave state unless (0.94) exp(— 1/N0V

P) 
>exp(— 1/N0V

S). Therefore, at least in the region 
Vs<Vp<Vs/[l+NoVsln(0.94)'], neither the s wave 
nor the ESP solutions can be the state of lowest energy. 
In fact, the isotropic p-w&ve solution studied here is 
just the state toward which the instability of Bardasis 
and Schriefler is tending. 

I t may also be noted that if there is a dominant s-
(or p~) wave potential, then a weaker potential of higher 
angular momentum but roughly the same radial shape 
does not produce any admixture of pairs with that / : 
if Mss>0, and if V1 has sufficiently near the same radial 
shape as V8 so that Msl>0 also, then \\2ES coth^(3E8 

-\-Vs-{-Vl\\>0 as well, and the minimum for the com­
bined interaction is pure s. 

APPENDIX B: PROOF OF EQUATION (44) 

To prove Eq. (44), we first substitute Eq. (42) into (41), which gives 

Applying the generalized Wick's theorem in the Heisenberg picture, we obtain 

G(t-t') = i L tr[5k,k<n^(0^t(O}Mkk'<n^(O^t(0}) 
kk' 

~5k/k<r{ak(0a_k(/0})l-k,'-K^{^-k^(^K't(0})], (B2) 
where 

ak(t) = exp{-i£kt}ak. 

But by adopting a spectral representation, and noting Eqs. (B3), (8), and (20), we find 

d* r r 1 - / ( 2 ) J(Z) f" aw r" r 
<r{ak(*)ak t(<0» = *7 — erM»-i ' ) / dZ8(Z-S*)\ 

J-X2ir J-a, Leo—Z-\-irj w—Z—irj-

Requiring, in addition, solutions that satisfy Eq. (22), so that (5 k ) 2 =£ k
2 , implies that 

1/ Sk\ 1/ Sk\ 
5(Z-£«) = -( 1 + — Wz-£k)+-(l }8(Z+Ek). 

2\ EkJ 2\ EkJ 

(B3) 

(B4) 

(B5) 

Substituting Eqs. (B4) and (B5) into (B2), and the resulting expression into Eq. (43), the t and co integrations may 
be performed. Finally, carrying out the remaining Z integrations leads directly to Eq. (44) as desired. 

38 A. Bardasis and J. R. Schrieffer, Phys. Rev. 121, 1050 (1961). 


